Изменения
Перейти к навигации
Перейти к поиску
мСтрока 161:
Строка 161:
− +
− +
→Фибоначчиево умножение
Разумеется, данная операция не является настоящим умножением чисел, и выражается формулой:<ref>[http://www.research.att.com/~njas/sequences/a101330.txt Notes on the Fibonacci circle and arroba products]{{ref-en}}</ref>
Разумеется, данная операция не является настоящим умножением чисел, и выражается формулой:<ref>[http://www.research.att.com/~njas/sequences/a101330.txt Notes on the Fibonacci circle and arroba products]{{ref-en}}</ref>
: <math>a\circ b = 3 a b - a \lfloor(b+1)\varphi^{-2}\rfloor - b \lfloor(a+1)\varphi^{-2}\rfloor,</math>
: <math>a\circ b = 3 a b - a \lfloor(b+1)\varphi^{-2}\rfloor - b \lfloor(a+1)\varphi^{-2}\rfloor,</math>
где <math>\lfloor\ldots\rfloor</math> — [[целая часть]], <math>\varphi=\frac{1+\sqrt{5}}{2}</math> — [[золотое сечение]].
где <math>\lfloor\cdot\rfloor</math> — [[целая часть]], <math>\varphi=\frac{1+\sqrt{5}}{2}</math> — [[золотое сечение]].
Эта операция обладает [[ассоциативность]]ю, на которую впервые обратил внимание [[Дональд Кнут]].<ref>{{cite journal |author=D. E. Knuth |title=Fibonacci multiplication |journal=Applied Mathematics Letters |volume=1 |issue=1 |year=1988 |pages=57-60 |doi=10.1016/0893-9659(88)90176-0}}</ref>
Эта операция обладает [[ассоциативность]]ю, на что впервые обратил внимание [[Дональд Кнут]].<ref>{{cite journal |author=D. E. Knuth |title=Fibonacci multiplication |journal=Applied Mathematics Letters |volume=1 |issue=1 |year=1988 |pages=57-60 |doi=10.1016/0893-9659(88)90176-0}}</ref>
Следует отметить, что другое «произведение» <math>\sum_{k,l} \varepsilon_k \zeta_l F_{k+l-2},</math> отличающееся лишь сдвигом на два разряда, уже не является ассоциативным.
Следует отметить, что другое «произведение» <math>\sum_{k,l} \varepsilon_k \zeta_l F_{k+l-2},</math> отличающееся лишь сдвигом на два разряда, уже не является ассоциативным.