Изменения

Перейти к навигации Перейти к поиску
Строка 47: Строка 47:     
При этом общая длина сообщения, состоящего из приведённых в таблице символов, составит 87 бит (в среднем 2,2308 бита на символ). При использовании равномерного кодирования общая длина сообщения составила бы 117 бит (ровно 3 бита на символ). Заметим, что [[Информационная энтропия|энтропия]] источника, независимым образом порождающего символы с указанными частотами, составляет ~2,1858 бита на символ, то есть [[Избыточность информации|избыточность]] построенного для такого источника кода Хаффмана, понимаемая как отличие среднего числа бит на символ от энтропии, составляет менее 0,05 бит на символ.
 
При этом общая длина сообщения, состоящего из приведённых в таблице символов, составит 87 бит (в среднем 2,2308 бита на символ). При использовании равномерного кодирования общая длина сообщения составила бы 117 бит (ровно 3 бита на символ). Заметим, что [[Информационная энтропия|энтропия]] источника, независимым образом порождающего символы с указанными частотами, составляет ~2,1858 бита на символ, то есть [[Избыточность информации|избыточность]] построенного для такого источника кода Хаффмана, понимаемая как отличие среднего числа бит на символ от энтропии, составляет менее 0,05 бит на символ.
  −
Классический алгоритм Хаффмана имеет ряд существенных недостатков. Во-первых, для восстановления содержимого сжатого сообщения декодер должен знать таблицу частот, которой пользовался кодер. Следовательно, длина сжатого сообщения увеличивается на длину таблицы частот, которая должна посылаться впереди данных, что может свести на нет все усилия по сжатию сообщения. Кроме того, необходимость наличия полной частотной статистики перед началом собственно кодирования требует двух проходов по сообщению: одного для построения модели сообщения (таблицы частот и Н-дерева), другого для собственно кодирования. Во-вторых, избыточность кодирования обращается в ноль лишь в тех случаях, когда вероятности кодируемых символов являются обратными степенями числа 2. В-третьих, для источника с энтропией, не превышающей 1 (например, для двоичного источника), непосредственное применение кода Хаффмана бессмысленно.
      
== Адаптивное сжатие ==
 
== Адаптивное сжатие ==
Строка 125: Строка 123:  
* 01 — из кода буквы '''«c»''' для контекста '''«b»''',
 
* 01 — из кода буквы '''«c»''' для контекста '''«b»''',
 
* 1 — из кода буквы '''«a»''' для контекста '''«c»'''.
 
* 1 — из кода буквы '''«a»''' для контекста '''«c»'''.
  −
== Переполнение ==
  −
В процессе работы алгоритма сжатия вес узлов в дереве кодирования Хаффмана неуклонно растет. Первая проблема возникает тогда, когда вес корня дерева начинает превосходить вместимость ячейки, в которой он хранится. Как правило, это 16-битовое значение и, следовательно, не может быть больше, чем 65535. Вторая проблема, заслуживающая ещё большего внимания, может возникнуть значительно раньше, когда размер самого длинного кода Хаффмана превосходит вместимость ячейки, которая используется для того, чтобы передать его в выходной поток. Декодеру все равно, какой длины код он декодирует, поскольку он движется сверху вниз по дереву кодирования, выбирая из входного потока по одному биту. Кодер же должен начинать от листа дерева и двигаться вверх к корню, собирая биты, которые нужно передать. Обычно это происходит с переменной типа «целое», и, когда длина кода Хаффмана превосходит размер типа «целое» в битах, наступает переполнение.
  −
  −
Можно доказать, что максимальную длину код Хаффмана для сообщений с одним и тем же входным алфавитом будет иметь, если частоты символов образует последовательность Фибоначчи. Сообщение с частотами символов, равными числам Фибоначчи до Fib (18), — это отличный способ протестировать работу программы сжатия по Хаффману.
      
== Масштабирование весов узлов дерева Хаффмана ==
 
== Масштабирование весов узлов дерева Хаффмана ==
Строка 137: Строка 130:     
Правильно организованное дерево Хаффмана после масштабирования может иметь форму, значительно отличающуюся от исходной. Это происходит потому, что масштабирование приводит к потере точности нашей статистики. Но со сбором новой статистики последствия этих «ошибок» практически сходят на нет. Масштабирование веса — довольно дорогостоящая операция, так как она приводит к необходимости заново строить все дерево кодирования. Но, так как необходимость в ней возникает относительно редко, то с этим можно смириться.
 
Правильно организованное дерево Хаффмана после масштабирования может иметь форму, значительно отличающуюся от исходной. Это происходит потому, что масштабирование приводит к потере точности нашей статистики. Но со сбором новой статистики последствия этих «ошибок» практически сходят на нет. Масштабирование веса — довольно дорогостоящая операция, так как она приводит к необходимости заново строить все дерево кодирования. Но, так как необходимость в ней возникает относительно редко, то с этим можно смириться.
  −
=== Выигрыш от масштабирования ===
  −
Масштабирование веса узлов дерева через определенные интервалы дает неожиданный результат. Несмотря на то, что при масштабировании происходит потеря точности статистики, тесты показывают, что оно приводит к лучшим показателям сжатия, чем если бы масштабирование откладывалось. Это можно объяснить тем, что текущие символы сжимаемого потока больше «похожи» на своих близких предшественников, чем на тех, которые встречались намного раньше. Масштабирование приводит к уменьшению влияния «давних» символов на статистику и к увеличению влияния на неё «недавних» символов. Это очень сложно измерить количественно, но, в принципе, масштабирование оказывает положительное влияние на степень сжатия информации. Эксперименты с масштабированием в различных точках процесса сжатия показывают, что степень сжатия сильно зависит от момента масштабирования веса, но не существует правила выбора оптимального момента масштабирования для программы, ориентированной на сжатие любых типов информации.
      
== Применение ==
 
== Применение ==
Анонимный участник

Реклама:

Навигация