Изменения
Перейти к навигации
Перейти к поиску
мСтрока 23:
Строка 23:
− +
− +
Строка 39:
Строка 39:
− +
→История
== История ==
== История ==
Термин «грид-вычисления» появился в начале [[1990-е|1990-х годов]], как метафора, демонстрирующая возможность простого доступа к вычислительным ресурсам как и к электрической сети ({{lang-en|power grid}}) в сборнике под редакцией Иэна Фостера и Карла Кессельмана «The Grid: Blueprint for a new computing infrastructure».
Термин «грид-вычисления» появился в начале [[1990-е|1990-х годов]] как метафора, демонстрирующая возможность простого доступа к вычислительным ресурсам как и к электрической сети ({{lang-en|power grid}}) в сборнике под редакцией Иэна Фостера и Карла Кессельмана «The Grid: Blueprint for a new computing infrastructure».
Использование свободного времени процессоров и добровольного компьютинга стало популярным в конце 1990-х годов после запуска проектов [[Добровольные вычисления|добровольных вычислений]] [[GIMPS]] в [[1996 год]]у, [[distributed.net]] в [[1997 год]]у и [[SETI@home]] в [[1999 год]]у. Эти первые проекты добровольного компьютинга использовали мощности подсоединённых к сети компьютеров обычных пользователей для решения исследовательских задач, требующих больших вычислительных мощностей.
Использование свободного времени процессоров и добровольного компьютинга стало популярным в конце 1990-х годов после запуска проектов [[Добровольные вычисления|добровольных вычислений]] [[GIMPS]] в [[1996 год]]у, [[distributed.net]] в [[1997 год]]у и [[SETI@home]] в [[1999 год]]у. Эти первые проекты добровольного компьютинга использовали мощности подсоединённых к сети компьютеров обычных пользователей для решения исследовательских задач, требующих больших вычислительных мощностей.
Идеи грид-системы (включая идеи из областей [[Распределённые вычисления|распределённых вычислений]], [[Объектно-ориентированное программирование|объектно-ориентированного программирования]], использования [[Кластер (группа компьютеров)|компьютерных кластеров]], [[веб-сервис]]ов и др.) были собраны и объединены {{нп3|Фостер, Иэн|Иэном Фостером||Ian Foster}}, {{нп3|Кессельман, Карл|Карлом Кессельманом||Carl Kesselman}} и Стивом Тукке (Steve Tuecke), которых часто называют отцами грид-технологии.<ref name=father>{{cite web|url=http://magazine.uchicago.edu/0404/features/index.shtml|title=Amy M. Braverman.Father of the Grid|archiveurl=https://www.webcitation.org/65X4DGVga?url=http://magazine.uchicago.edu/0404/features/index.shtml|archivedate=2012-02-18}}</ref> Они начали создание набора инструментов для грид-компьютинга {{нп3|Globus Toolkit}}, который включает не только инструменты менеджмента вычислений, но и инструменты управления ресурсами хранения данных, обеспечения безопасности доступа к данным и к самому гриду, мониторинга использования и передвижения данных, а также инструментарий для разработки дополнительных грид-сервисов. В настоящее время этот набор инструментария является де факто стандартом для построения инфраструктуры на базе технологии грид, хотя на рынке существует множество других инструментариев для грид-систем как в масштабе предприятия, так и в глобальном.
Идеи грид-системы (включая идеи из областей [[Распределённые вычисления|распределённых вычислений]], [[Объектно-ориентированное программирование|объектно-ориентированного программирования]], использования [[Кластер (группа компьютеров)|компьютерных кластеров]], [[веб-сервис]]ов и др.) были собраны и объединены {{нп3|Фостер, Иэн|Иэном Фостером||Ian Foster}}, {{нп3|Кессельман, Карл|Карлом Кессельманом||Carl Kesselman}} и Стивом Тукке (Steve Tuecke), которых часто называют отцами грид-технологии.<ref name=father>{{cite web|url=http://magazine.uchicago.edu/0404/features/index.shtml|title=Amy M. Braverman.Father of the Grid|archiveurl=https://www.webcitation.org/65X4DGVga?url=http://magazine.uchicago.edu/0404/features/index.shtml|archivedate=2012-02-18}}</ref> Они начали создание набора инструментов для грид-компьютинга {{нп3|Globus Toolkit}}, который включает в себя не только инструменты менеджмента вычислений, но и инструменты управления ресурсами хранения данных, обеспечения безопасности доступа к данным и к самому гриду, мониторинга использования и передвижения данных, а также инструментарий для разработки дополнительных грид-сервисов. В настоящее время этот набор инструментария является де факто стандартом для построения инфраструктуры на базе технологии грид, хотя на рынке существует множество других инструментариев для грид-систем как в масштабе предприятия, так и в глобальном.
Грид-технология применяется для моделирования и обработки данных в экспериментах на [[Большой адронный коллайдер|Большом адронном коллайдере]] (грид используется и в других задачах с интенсивными вычислениями). На платформе [[BOINC]] в настоящее время ведутся активные вычисления более 60 проектов. Например, проект '''Fusion''' (юг Франции, разработка метода получения электричества с помощью термоядерного синтеза на экспериментальном реакторе [[ITER]]) также использует грид ([[EDGeS@Home]]). Под названием '''CLOUD''' начат проект коммерциализации грид-технологий, в рамках которого небольшие компании, институты, нуждающиеся в вычислительных ресурсах, но не могущие себе позволить по тем или иным причинам иметь свой суперкомпьютерный центр, могут покупать вычислительное время грида.<ref name="gazeta.ru" />
Грид-технология применяется для моделирования и обработки данных в экспериментах на [[Большой адронный коллайдер|Большом адронном коллайдере]] (грид используется и в других задачах с интенсивными вычислениями). На платформе [[BOINC]] в настоящее время ведутся активные вычисления более 60 проектов. Например, проект '''Fusion''' (юг Франции, разработка метода получения электричества с помощью термоядерного синтеза на экспериментальном реакторе [[ITER]]) также использует грид ([[EDGeS@Home]]). Под названием '''CLOUD''' начат проект коммерциализации грид-технологий, в рамках которого небольшие компании, институты, нуждающиеся в вычислительных ресурсах, но не могущие себе позволить по тем или иным причинам иметь свой суперкомпьютерный центр, могут покупать вычислительное время грида.<ref name="gazeta.ru" />
Первый уровень, Tier1 — хранение второй копии этих данных в других уголках мира (12 центров: в России, [[Италия|Италии]], Испании, [[Франция|Франции]], Скандинавии, [[Великобритания|Великобритании]], [[США]], на [[Тайвань|Тайване]], а один центр первого уровня — CMS Tier1 — в ЦЕРНе). 26 марта 2015 года новый центр открылся в Лаборатории информационных технологий в Дубне (ОИЯИ)<ref>{{Cite web|url = http://www.dubna-oez.ru/news/747.htm|title = В Дубне открыт первый в России центр уровня Tier-1|author = |work = |date = 2015-03-26|publisher = }}</ref>. Центры обладают значительными ресурсами для хранения данных.
Первый уровень, Tier1 — хранение второй копии этих данных в других уголках мира (12 центров: в России, [[Италия|Италии]], Испании, [[Франция|Франции]], Скандинавии, [[Великобритания|Великобритании]], [[США]], на [[Тайвань|Тайване]], а один центр первого уровня — CMS Tier1 — в ЦЕРНе). 26 марта 2015 года новый центр открылся в Лаборатории информационных технологий в Дубне (ОИЯИ)<ref>{{Cite web|url = http://www.dubna-oez.ru/news/747.htm|title = В Дубне открыт первый в России центр уровня Tier-1|author = |work = |date = 2015-03-26|publisher = }}</ref>. Центры обладают значительными ресурсами для хранения данных.
Tier2 — следующие в иерархии, многочисленные центры второго уровня. Наличие крупных ресурсов для хранения данных не обязательно; обладают хорошими вычислительными ресурсами. Российские центры: в Дубне ([[Объединённый институт ядерных исследований|ОИЯИ]]), три центра в Москве ([[НИИЯФ МГУ]], [[ФИАН]], [[Институт теоретической и экспериментальной физики|ИТЭФ]]), Троицке ([[Институт ядерных исследований РАН|ИЯИ]]), Протвино ([[Институт физики высоких энергий|ИФВЭ]]), Санкт-Петербурге ([[СПбГУ]])<ref name="Распределенные вычисления и грид-технологии в науке и образовании">{{cite web |url=http://www.egee-rdig.ru/documents/open/65/grid2008abst09.pdf |title=РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛЕНИЯ И ГРИД-ТЕХНОЛОГИИ В НАУКЕ И ОБРАЗОВАНИИ. Тезисы докладов третьей международной конференции. Дубна, 30 июня – 4 июля 2008 г. |accessdate=2012-10-03 |deadlink=да |archiveurl=https://web.archive.org/web/20110722074054/http://www.egee-rdig.ru/documents/open/65/grid2008abst09.pdf |archivedate=2011-07-22 }}</ref> и Гатчине ([[ПИЯФ]]). Кроме того, в единую сеть с этими центрами связаны и центры других стран-участниц ОИЯИ — в [[Харьков]]е, [[Минск]]е, [[Ереван]]е, [[София|Софии]], [[Баку]] и [[Тбилиси]].
Tier2 — следующие в иерархии, многочисленные центры второго уровня. Наличие крупных ресурсов для хранения данных не обязательно; обладают хорошими вычислительными ресурсами. Российские центры: в Дубне ([[Объединённый институт ядерных исследований|ОИЯИ]]), три центра в Москве ([[НИИЯФ МГУ]], [[ФИАН]], [[Институт теоретической и экспериментальной физики|ИТЭФ]]), Троицке ([[Институт ядерных исследований РАН|ИЯИ]]), Протвино ([[Институт физики высоких энергий|ИФВЭ]]), Санкт-Петербурге ([[СПбГУ]])<ref name="Распределенные вычисления и грид-технологии в науке и образовании">{{cite web |url=http://www.egee-rdig.ru/documents/open/65/grid2008abst09.pdf |title=РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛЕНИЯ И ГРИД-ТЕХНОЛОГИИ В НАУКЕ И ОБРАЗОВАНИИ. Тезисы докладов третьей международной конференции. Дубна, 30 июня – 4 июля 2008 г. |accessdate=2012-10-03 |deadlink=да |archiveurl=https://web.archive.org/web/20110722074054/http://www.egee-rdig.ru/documents/open/65/grid2008abst09.pdf |archivedate=2011-07-22 }}</ref> и Гатчине ([[ПИЯФ]]). Кроме того, в единую сеть с этими центрами связаны и центры других стран - участниц ОИЯИ — в [[Харьков]]е, [[Минск]]е, [[Ереван]]е, [[София|Софии]], [[Баку]] и [[Тбилиси]].
Более 85 % всех вычислительных задач Большого адронного коллайдера по состоянию на 2010 год выполнялось вне ЦЕРНа, из них более 50 % — на центрах второго уровня.<ref name="gazeta.ru" />
Более 85 % всех вычислительных задач Большого адронного коллайдера по состоянию на 2010 год выполнялось вне ЦЕРНа, из них более 50 % — на центрах второго уровня.<ref name="gazeta.ru" />