Трансформер (модель машинного обучения)

Материал из in.wiki
Версия от 18:25, 29 октября 2020; w>Алексей Скрипник
Перейти к навигации Перейти к поиску

Трансформер (англ. Transformer) - архитектура нейросетей для глубокого обучения представленная в 2017, используемая для работы с последовательностями.[1]

По аналогии с рекуррентными нейронными сетями (РНС), Трансформеры предназначены для обрабатки последовательностей, таких как текст на естественном языке, и решения таких задач как машинный перевод и автоматическое реферирование. В отличии от РНС, Трансформеры не требуют обработки последовательностей по порядку. Для примера, если входные данные это текст, Трасформеру не требуется обрабатывать конец текста после обработки его начала. Благодаря этому Трансформеры распараллеливаются легче чем РНС и могут быть быстрее обучены.[1]

Примечания

  1. 1,0 1,1 Ошибка Lua в Модуль:Sources на строке 1705: attempt to index field 'wikibase' (a nil value).