Трансформер (модель машинного обучения): различия между версиями
w>Bluehappybeetle м (орфография) |
(орфография) |
||
Строка 18: | Строка 18: | ||
== Внимание на основе скалярного произведения == | == Внимание на основе скалярного произведения == | ||
− | Каждый механизм внимания параметризован матрицами весов запросов <math>W_Q</math>, весов ключей <math>W_K</math>, весов значений <math>W_V</math>. Для вычисления внимания входного вектора <math>X</math> к вектору <math>Y</math>, вычисляются вектора <math>Q=W_Q X</math>, <math>K=W_K X</math>, <math>V=W_V Y</math>. Эти | + | Каждый механизм внимания параметризован матрицами весов запросов <math>W_Q</math>, весов ключей <math>W_K</math>, весов значений <math>W_V</math>. Для вычисления внимания входного вектора <math>X</math> к вектору <math>Y</math>, вычисляются вектора <math>Q=W_Q X</math>, <math>K=W_K X</math>, <math>V=W_V Y</math>. Эти вектора используются для вычисления результата внимания по формуле: |
<math>\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\mathrm{T}}{\sqrt{d_k}}\right)V</math> | <math>\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\mathrm{T}}{\sqrt{d_k}}\right)V</math> |
Версия от 15:40, 1 апреля 2021
Трансфо́рмер (англ. Transformer) — архитектура глубоких нейронных сетей, представленная в 2017 году исследователями из Google Brain.[1]
По аналогии с рекуррентными нейронными сетями (РНС) трансформеры предназначены для обработки последовательностей, таких как текст на естественном языке, и решения таких задач как машинный перевод и автоматическое реферирование. В отличие от РНС, трансформеры не требуют обработки последовательностей по порядку. Например, если входные данные — это текст, то трансформеру не требуется обрабатывать конец текста после обработки его начала. Благодаря этому трансформеры распараллеливаются легче чем РНС и могут быть быстрее обучены.[1]
Архитектура сети
Архитектура трансформер состоит из кодировщика и декодировщика. Кодировщик получает на вход векторизованую последовательность с позиционной информацией. Декодировщик получает на вход часть этой последовательности и выход кодировщика. Кодировщик и декодировщик состоят из слоев. Слои кодировщика последовательно передают результат следующему слою в качестве его входа. Слои декодировщика последовательно передают результат следующему слою вместе с результатом кодировщика в качестве его входа.
Каждый кодировщик состоит из механизма самовнимания (вход из предыдущего слоя) и нейронной сети с прямой связью (вход из механизма самовнимания). Каждый декодировщик состоит из механизма самовнимания (вход из предыдущего слоя), механизма внимания к результатам кодирования (вход из механизма самовнимания и кодировщика) и нейронной сети с прямой связью (вход из механизма внимания).
Внимание на основе скалярного произведения
Каждый механизм внимания параметризован матрицами весов запросов , весов ключей , весов значений . Для вычисления внимания входного вектора к вектору , вычисляются вектора , , . Эти вектора используются для вычисления результата внимания по формуле:
Использование
Трансформеры используются в Яндекс.Переводчике[2], Яндекс.Новостях[3], Google Переводчике[4], GPT-3.
Примечания
- ↑ 1,0 1,1 Ошибка Lua в Модуль:Sources на строке 1705: attempt to index field 'wikibase' (a nil value).
- ↑ Семен Козлов. Transformer — новая архитектура нейросетей для работы с последовательностями . Хабр (30 октября 2017). Дата обращения: 3 ноября 2020.
- ↑ Тимур Гаскаров. Как Яндекс научил искусственный интеллект находить ошибки в новостях . Хабр (12 декабря 2019). Дата обращения: 3 ноября 2020.
- ↑ Isaac Caswell, Bowen Liang. Recent Advances in Google Translate (англ.). Google AI Blog (8 июня 2020). Дата обращения: 3 ноября 2020.