Изменения
Перейти к навигации
Перейти к поиску
Строка 1:
Строка 1:
− +
+
+
− +
Строка 15:
Строка 17:
− +
Строка 39:
Строка 41:
− +
+
+
+
−
− == См. также ==
− * [[Биграммный шифр]]
нет описания правки
'''N-грамм''' определяется как последовательность из n элементов.<ref>Proceedings of the 7th Annual Conference ZNALOSTI 2008, Bratislava, Slovakia, pp. 54-65, February 2008. ISBN 978-80-227-2827-0.</ref> С [[семантика|семантической]] точки зрения, это может быть [[последовательность]] звуков, слогов, слов или букв. На практике чаще встречается N-грамм как ряд слов. Последовательность из двух последовательных элементов часто называют биграммы, последовательность из трех элементов называется триграмма. Не менее четырех и выше элементов обозначаются как N-грамм, N заменяется на количество последовательных элементов.
{{викифицировать}}{{стиль}}
'''N-грамм''' — последовательность из n элементов.<ref>Proceedings of the 7th Annual Conference ZNALOSTI 2008, Bratislava, Slovakia, pp. 54-65, February 2008. ISBN 978-80-227-2827-0.</ref> С [[семантика|семантической]] точки зрения, это может быть [[последовательность]] звуков, слогов, слов или букв. На практике чаще встречается N-грамм как ряд слов. Последовательность из двух последовательных элементов часто называют биграммы, последовательность из трех элементов называется триграмма. Не менее четырех и выше элементов обозначаются как N-грамм, N заменяется на количество последовательных элементов.
== Использование N-грамм ==
== Использование N-грамм ==
=== Общее использование N-грамм ===
=== Общее использование N-грамм ===
N-граммы в целом находят свое применение в широкой области наук. Они могут применяться, например, в области теоретической [[математика|математики]], [[биология|биологии]], [[картография|картографии]], а также в [[музыка|музыке]]. Наиболее часто использование N-грамм, включает следующие области:<ref>Wikipedia: N-Gram [online]. 22:47, 14 September 2004, 9 April 2009, at 05:14 . Доступно по адресу: <http://en.wikipedia.org/wiki/N-gram></ref>
N-граммы в целом находят свое применение в широкой области наук. Они могут применяться, например, в области теоретической [[математика|математики]], [[биология|биологии]], [[картография|картографии]], а также в [[музыка|музыке]]. Наиболее часто использование N-грамм, включает следующие области:
* извлечение данных для кластеризации серии спутниковых снимков Земли из космоса, чтобы затем решить, какие конкретные части Земли на изображении,
* извлечение данных для кластеризации серии спутниковых снимков Земли из космоса, чтобы затем решить, какие конкретные части Земли на изображении,
* поиск генетических последовательностей,
* поиск генетических последовательностей,
В области обработки естественного языка, N-граммы используется в основном для предугадывания на основе вероятностных моделей. N-граммная модель рассчитывает вероятность последнего слова N-грамма если известны все предыдущие. При использовании этого подхода для моделирования языка предполагается, что появление каждого слова зависит только от предыдущих слов.<ref>URAFSKY, Daniel, MARTIN, James H. Speech And Language Processing : An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition. 2nd edition. Upper Saddle River: Prentice Hall, 2008. 1024 s. Доступно по адресу: <http://books.google.com/books?id=fZmj5UNK8AQC&dq=Speech+and+language+processing+:an+introduction+to+natural+language+processing&printsec=frontcover&source=bl&ots=LqS8_-HLQI&sig=0hNFclP0wlsKmjUtfyShEm437ws&hl=en&ei=sjrvSZaHCImI_QbE_cjDDw&sa=X&oi=book_result&ct=result&resnum=9>. ISBN 0-13-504196-1.</ref>
В области обработки естественного языка, N-граммы используется в основном для предугадывания на основе вероятностных моделей. N-граммная модель рассчитывает вероятность последнего слова N-грамма если известны все предыдущие. При использовании этого подхода для моделирования языка предполагается, что появление каждого слова зависит только от предыдущих слов.<ref>URAFSKY, Daniel, MARTIN, James H. Speech And Language Processing : An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition. 2nd edition. Upper Saddle River: Prentice Hall, 2008. 1024 s. Доступно по адресу: <http://books.google.com/books?id=fZmj5UNK8AQC&dq=Speech+and+language+processing+:an+introduction+to+natural+language+processing&printsec=frontcover&source=bl&ots=LqS8_-HLQI&sig=0hNFclP0wlsKmjUtfyShEm437ws&hl=en&ei=sjrvSZaHCImI_QbE_cjDDw&sa=X&oi=book_result&ct=result&resnum=9>. ISBN 0-13-504196-1.</ref>
Другое применение N-граммов является выявление [[плагиат]]а. Если разделить текст на несколько небольших фрагментов, представленных n-граммами, их легко сравнить друг с другом, и таким образом получить степень сходства контролируемых документов.<ref>Proceedings of the ITAT 2008, Information Technologies - Applications and Theory, Hrebienok, Slovakia, pp. 23-26, September 2008. ISBN 978-80-969184-8-5</ref> N-грамм, часто успешно используется для категоризации текста и языка. Кроме того, их можно использовать для создания функций, которые позволяют получать знания из текстовых данных. Используя N-грамм можно эффективно найти кандидатов, чтобы заменить слова с ошибками правописания.<ref>Wikipedia: N-Gram [online]. 22:47, 14 September 2004, 9 April 2009, at 05:14 . Доступно по адресу: <http://en.wikipedia.org/wiki/N-gram>.</ref>
Другое применение N-граммов является выявление [[плагиат]]а. Если разделить текст на несколько небольших фрагментов, представленных n-граммами, их легко сравнить друг с другом, и таким образом получить степень сходства контролируемых документов.<ref>Proceedings of the ITAT 2008, Information Technologies - Applications and Theory, Hrebienok, Slovakia, pp. 23-26, September 2008. ISBN 978-80-969184-8-5</ref> N-грамм, часто успешно используется для категоризации текста и языка. Кроме того, их можно использовать для создания функций, которые позволяют получать знания из текстовых данных. Используя N-грамм можно эффективно найти кандидатов, чтобы заменить слова с ошибками правописания.
=== Пример биграммной модели ===
=== Пример биграммной модели ===
В связи с частым использованием N-граммов для решения различных задач, необходим надежный и быстрый алгоритм для извлечения их из текста. Подходящий инструмент для извлечения n-граммов должен быть в состоянии работать с неограниченным размером текста, работать быстро и эффективно использовать имеющиеся ресурсы. Есть несколько методов извлечения N-граммов из текста. Эти методы основаны на разных принципах:
В связи с частым использованием N-граммов для решения различных задач, необходим надежный и быстрый алгоритм для извлечения их из текста. Подходящий инструмент для извлечения n-граммов должен быть в состоянии работать с неограниченным размером текста, работать быстро и эффективно использовать имеющиеся ресурсы. Есть несколько методов извлечения N-граммов из текста. Эти методы основаны на разных принципах:
* ''Алгоритм Nagao 94'' для текстов на японском<ref>M. Nagao and S. Mori. A New Method of N-gram Statistics for Large Number of n and Automatic Extraction of Words and Phrases from Large Text Data of Japanese. In Proceedings of the 15th International Conference on Computational Linguistics (COLING 1994), Kyoto, Japan, 1994.</ref>
* ''Алгоритм Nagao 94'' для текстов на японском<ref>M. Nagao and S. Mori. A New Method of N-gram Statistics for Large Number of n and Automatic Extraction of Words and Phrases from Large Text Data of Japanese. In Proceedings of the 15th International Conference on Computational Linguistics (COLING 1994), Kyoto, Japan, 1994.</ref>
* [[Алгоритм Лемпеля — Зива — Велча]]<ref>Wikipedia : Lempel-Ziv-Welch [online]. 17:18, 8 October 2001, 26 April 2009, at 09:15 (UTC). Доступно по адресу: <http://en.wikipedia.org/wiki/Lempel-Ziv-Welch>.</ref>
* [[Алгоритм Лемпеля — Зива — Велча]]
* [[Суффиксный массив]]
* [[Суффиксный массив]]
* [[Суффиксное дерево]]
* [[Суффиксное дерево]]
* [[Инвертированный индекс]]
* [[Инвертированный индекс]]
== См. также ==
* [[Биграммный шифр]]
== Примечания ==
== Примечания ==
{{примечания}}
{{примечания}}
[[Категория:Информатика]]
[[Категория:Информатика]]