Изменения
Перейти к навигации
Перейти к поиску
мСтрока 16:
Строка 16:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Пример биграммной модели, дополнение
Другое применение N-граммов является выявление [[плагиат]]а. Если разделить текст на несколько небольших фрагментов, представленных n-граммами, их легко сравнить друг с другом, и таким образом получить степень сходства контролируемых документов.<ref>Proceedings of the ITAT 2008, Information Technologies - Applications and Theory, Hrebienok, Slovakia, pp. 23-26, September 2008. ISBN 978-80-969184-8-5</ref> N-грамм, часто успешно используется для категоризации текста и языка. Кроме того, их можно использовать для создания функций, которые позволяют получать знания из текстовых данных. Используя N-грамм можно эффективно найти кандидатов, чтобы заменить слова с ошибками правописания.<ref>Wikipedia: N-Gram [online]. 22:47, 14 September 2004, 9 April 2009, at 05:14 . Доступно по адресу: <http://en.wikipedia.org/wiki/N-gram>.</ref>
Другое применение N-граммов является выявление [[плагиат]]а. Если разделить текст на несколько небольших фрагментов, представленных n-граммами, их легко сравнить друг с другом, и таким образом получить степень сходства контролируемых документов.<ref>Proceedings of the ITAT 2008, Information Technologies - Applications and Theory, Hrebienok, Slovakia, pp. 23-26, September 2008. ISBN 978-80-969184-8-5</ref> N-грамм, часто успешно используется для категоризации текста и языка. Кроме того, их можно использовать для создания функций, которые позволяют получать знания из текстовых данных. Используя N-грамм можно эффективно найти кандидатов, чтобы заменить слова с ошибками правописания.<ref>Wikipedia: N-Gram [online]. 22:47, 14 September 2004, 9 April 2009, at 05:14 . Доступно по адресу: <http://en.wikipedia.org/wiki/N-gram>.</ref>
=== Пример биграммной модели ===
Цель постраения N-граммных моделей является определение вероятности употребления заданной фразы. Эту вероятность можно задать формально как вероятность возникновения последовательности слов в неком корпусе (наборе текстов). К примеру, вероятность фразы «счастье есть удовольствие без раскаяния» можно вычислить как произведение вероятностей каждого из слов этой фразы:
<pre>P = P(счастье) * P(есть|счастье) * P(удовольствие|счастье есть) * P(без|счастье есть удовольствие) * P(раскаяния|счастье есть удовольствие без)</pre>
Рассчитать вероятность P(счастье) дело нехитрое: нужно всего лишь посчитать сколько раз это слово встретилось в тексте и поделить это значение на общее число слов. Но рассчитать вероятность P(раскаяния|счастье есть удовольствие без) уже не так просто. К счастью, мы можем упростить эту задачу. Примем, что вероятность слова в тексте зависит только от предыдущего слова. Тогда наша формула для расчета фразы примет следующий вид:
<pre>P = P(счастье) * P(есть|счастье) * P(удовольствие|есть) * P(без|удовольствие) * P(раскаяния|без)</pre>
Уже проще. Рассчитать условную вероятность P(есть|счастье) несложно. Для этого считаем количество пар 'счастье есть' и делим на количество в тексте слова 'счастье'.
В результате, если мы посчитаем все пары слов в некотором тексте, мы сможем вычислить вероятность произвольной фразы. Этот набор рассчитанных вероятностей и будет биграммной моделью.
== Научно-исследовательские проекты Google ==
== Научно-исследовательские проекты Google ==