Изменения

Перейти к навигации Перейти к поиску
iw
Строка 22: Строка 22:  
|12-уровневый декодер-[[Трансформер (модель машинного обучения)|трансформер]] с 12 головками (без кодировщика), за которым следует [[Линейный софтмакс (машинное обучение)|линейный софтмакс]].
 
|12-уровневый декодер-[[Трансформер (модель машинного обучения)|трансформер]] с 12 головками (без кодировщика), за которым следует [[Линейный софтмакс (машинное обучение)|линейный софтмакс]].
 
|117 миллионов
 
|117 миллионов
|{{Не переведено 3|BookCorpus|BookCorpus|en|BookCorpus}}: 4,5 ГБ текста из 7000 неизданных книг разных жанров.<ref>{{Cite conference|last1=Zhu|first1=Yukun|last2=Kiros|first2=Ryan|last3=Zemel|first3=Rich|last4=Salakhutdinov|first4=Ruslan|last5=Urtasun|first5=Raquel|last6=Torralba|first6=Antonio|last7=Fidler|first7=Sanja|date=2015|title=Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books|url=https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html|conference=IEEE International Conference on Computer Vision (ICCV) 2015|pages=19–27|arxiv=1506.06724|access-date=2023-02-07|archive-date=2023-02-05|archive-url=https://web.archive.org/web/20230205222219/https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html|url-status=live}}</ref>
+
|[[BookCorpus]]: 4,5 ГБ текста из 7000 неизданных книг разных жанров.<ref>{{Cite conference|last1=Zhu|first1=Yukun|last2=Kiros|first2=Ryan|last3=Zemel|first3=Rich|last4=Salakhutdinov|first4=Ruslan|last5=Urtasun|first5=Raquel|last6=Torralba|first6=Antonio|last7=Fidler|first7=Sanja|date=2015|title=Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books|url=https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html|conference=IEEE International Conference on Computer Vision (ICCV) 2015|pages=19–27|arxiv=1506.06724|access-date=2023-02-07|archive-date=2023-02-05|archive-url=https://web.archive.org/web/20230205222219/https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html|url-status=live}}</ref>
 
|11 июня 2018<ref name="gpt1paper2">{{Cite web|url=https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf|title=Improving Language Understanding by Generative Pre-Training|date=11 June 2018|pages=12|publisher=[[OpenAI]]|archive-url=https://web.archive.org/web/20210126024542/https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf|archive-date=26 January 2021|access-date=23 January 2021|last1=Radford|first1=Alec|last2=Narasimhan|first2=Karthik|last3=Salimans|first3=Tim|last4=Sutskever|first4=Ilya|url-status=live}}</ref>
 
|11 июня 2018<ref name="gpt1paper2">{{Cite web|url=https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf|title=Improving Language Understanding by Generative Pre-Training|date=11 June 2018|pages=12|publisher=[[OpenAI]]|archive-url=https://web.archive.org/web/20210126024542/https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf|archive-date=26 January 2021|access-date=23 January 2021|last1=Radford|first1=Alec|last2=Narasimhan|first2=Karthik|last3=Salimans|first3=Tim|last4=Sutskever|first4=Ilya|url-status=live}}</ref>
 
|-
 
|-
Строка 36: Строка 36:  
|GPT-2, но с изменениями для возможности масштабирования в большем объёме.
 
|GPT-2, но с изменениями для возможности масштабирования в большем объёме.
 
|175 миллиардов ({{рост}}11566 %)
 
|175 миллиардов ({{рост}}11566 %)
|570 ГБ обычного текста, 0,4 трлн токенов. В основном содержит данные из наборов данных CommonCrawl, WebText, английской Википедии, а также {{Не переведено 3|BookCorpus|BookCorpus|en|BookCorpus}}.
+
|570 ГБ обычного текста, 0,4 трлн токенов. В основном содержит данные из наборов данных CommonCrawl, WebText, английской Википедии, а также [[BookCorpus]].
 
|11 июня 2020<ref>{{Cite web|language=en-US|url=https://openai.com/research/language-models-are-few-shot-learners|title=Language models are few-shot learners|website=openai.com|archive-url=https://web.archive.org/web/20230321182325/https://openai.com/research/language-models-are-few-shot-learners|archive-date=2023-03-21|access-date=2023-03-21|url-status=live}}</ref>
 
|11 июня 2020<ref>{{Cite web|language=en-US|url=https://openai.com/research/language-models-are-few-shot-learners|title=Language models are few-shot learners|website=openai.com|archive-url=https://web.archive.org/web/20230321182325/https://openai.com/research/language-models-are-few-shot-learners|archive-date=2023-03-21|access-date=2023-03-21|url-status=live}}</ref>
 
|-
 
|-
Анонимный участник

Реклама:

Навигация